2000 V 6H-SiC PN Junction Diodes

Philip G. Neudeck, David J. Larkin, Carl S. Salupo, J. Anthony Powell, and Lawrence G. Matus

NASA Lewis Research Center
Cleveland, Ohio
Acknowledgments

Robert Allen, Gerry Buchar, and Luann Keys
NASA Lewis Research Center

Research carried out under internal funding by
NASA Lewis Research Center, Cleveland, Ohio
Key development areas for SiC power devices:

• Contact resistivities.
 ⇒ device on-state resistances.

• Thermal oxidation and surface passivation.
 ⇒ SiC MOSFET's, power device reliability.

• SiC wafer growth.
 ⇒ defects limit device areas, current ratings.

• SiC epilayer growth.
 ⇒ background dopings and uniformity.
6H-SiC PN Junction Diodes

<table>
<thead>
<tr>
<th>Unannealed Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µm P+ 6H-SiC NA > 1018</td>
</tr>
</tbody>
</table>

N 6H-SiC Epilayer
ND ~ 2 - 5 x 10^15 cm^-3
~ 24 µm

~ 8 µm N+ 6H-SiC Epilayer
ND > 10^18 cm^-3

~ 300 µm N+ 6H-SiC Wafer
ND ~ 10^18 cm^-3

Backside Polycrystalline Epi-Growth

Array of Small-Area Devices

6 µm Etch Depth

1 mm
NASA Lewis 6H-SiC PN Diode

Previous best reported SiC diode blocking voltage: 1400 V

2000 V functional yield greater than 50% on small-area ($\leq 4 \times 10^{-4} \text{ cm}^2$) devices.
6H-SiC PN Diode Characteristics

200 µm x 200 µm Square Device

T = 24 °C in Fluorinert™

\[J_0 = 5 \times 10^{-22} \text{ A/cm}^2 \]

\[n = 2.05 \]
6H-SiC Diode after 2200 V Catastrophic Failure

Failure appears to occur at diode periphery.
Measured PN Junction Breakdown Fields

- **NASA Lewis 2000 V 6H-SiC Diode**
- **Other NASA Lewis 6H-SiC Diodes**
- **Cree Research 6H-SiC Data**
- **Silicon**

Y-axis: Maximum Electric Field (V/cm)

X-axis: Background Doping (cm$^{-3}$)
Summary

• Site Competition Epitaxy has greatly improved dopant control in CVD SiC epilayers.

• Reduced epilayer doping has enabled demonstration of the first 2000 V SiC rectifiers ever reported.

• Surface passivation, crystal defects, and other key issues need to be addressed.

• Further improvements expected as crystal growth and processing technologies continue to mature.